TEMPERATURE STRATIFICATION IN CLOSED LIQUID-FILLED
VOLUMES WITH CONSTANT HEAT-FLUX DENSITY AT THE SHEI%
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A one-dimensional model is proposed for the estimation of temperature stratification in
closed liquid~filled volumes, The results obtained are compared with experimental data
and the results of numerical solution,

When low-boiling (in particular, cryogenic) liquids are stored in closed volumes, temperature stratifica~-
tion is observed, in that the liquid temperature Ty close to its boundary with the gas is considerably higher
than the mean-mass temperature T. The temperature stratification is accompanied by a significant pressure
increase in the volume — much larger than in uniform liquid heating. Both these effects (intense increase in
the surface temperature of the liquid and the pressure with time) are extremely undesirable, since they limit
the storage time and create considerable difficulties for the use of liquids [1-3].

The process occurring in a heat-insulated volume containing liquid at a temperature below the temper~
ature of the surrounding medium may be regarded as internal convection with boundary conditions of the second
kind (a given constant heat-flow density at the shell), Analytic solution of such problems is associated with
considerable and often insurmountable difficulties [4]. Numerical solutions may only be found for certainshell
configuration in a limited range of Rayleigh and Fourier numbers [5]. Essentially, the various empirical gen~
eralizations of the experimental data (for example, [2, 6, 7]) are only true for the materials and experimental
conditions for which they are obtained, Thus, there is at present no reliable method (not only of calculation
but of estimating the temperature stratification),

Below a simple method is proposed for the estimation of the temperature stratification,

Consider the heating of a liquid partially filling a volume of arbitrary shape (for example, spherical;
see Fig. 1). Suppose that at time 7 =0 the shell containing the liquid at temperature T, begins to be heated
by a heat flux of constant density q. To determine the temperature field in the liquid at subsequent times the
following assumptions are made:

1) that the temperature field in the liquid is one~dimensional;

2) that the heat flux Qy=9qF; incident on the part of the shell bounding the liquid is consumed in uniform
heating of the liquid, i.e., in increasing its mean-mass temperature;

3) that the heat flux Qg = gFg incident on the part of the shell bounding the gas (vapor) is consumed in
heating the liquid—gas boundary. The heat in the liquid propagates as in a semibounded body but with effective
thermal conduetivity A ¢r=€X, where € =f(Ra); .

4) that the effects of the temperature fields due to the heat fluxes Q and Q. are additive (it has been ex~
perimentally confirmed that the temperature field in the heating of the shell surfaces F; and Fg is practically
additive[3, 7]);

5) that the heat flux consumed in vaporizing the liquid and heating the shell and the gas (vapor) is neg-
ligible.

Under these assumptions, the temperature field in the liquid may be written as

e(%,Fo)=é+ex(_g,Fo), (1)
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Fig. 1. Partially filled shell,

The dimensionless mean-mass temperature is easily found from the heat balance:

gF, t=V, oc (T —T,). 2)
Rearranging Eq. (2), the followmg result 1s obtained:
a. (T—=T)r _ FR 3)
6= R = Fo.
For example, in the case of a spherical shell
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is a coefficient characterizing the filling of the volume by the liquid,

The expression for the temperature due to heat flux Qg may be found (under the given assumptions) from
the solution for a semibounded body [8] in the form
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In the case of a spherical shell Fy/Fg=2R/H.

In the first approximation, the dependence of €= Aeff/ A on the Rayleigh number may be taken to be the
same as in the calculation of the effective thermal conductivity in layers [9]

e = ARal/s. (6)

In the present case the coefficient A, which in the calculation of the heat transfer is constant, may depend on
the shell configuration, the filling coefficient m, the fraction of heat consumed in liquid vaporization, and sev-

eral other factors,
Finally, substituting Eq. (6) into Eq. (5) and Egs. (3) and (5) into Eq. (1) gives
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Noting that ierfe 0 = 0.564 [8], the liquid-surface temperature ®g =0 (0, Fo) may be written in the form
F R Fo
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1t is of interest to compare the results obtained using Eq. (8) with those obtained experimentally and in
numerical calculations, The liquid-surface temperature ®g is determined using the approximate values @ =
3Fo, Fg ™ Fg, and the experimental value [2] VA =0.2, Then Eq. (8) may be replaced by the simplified ex-

pression
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Curves of ®g =0g(Fo) calculated from Eq., @) for Ra=101°, 10“, and 10! are shown in Fig. 2, together
with experimental data for spherical shells partially filled with nitrogen [2] and water [7] and averaged data
for water and alcohols at complete filling of the volume [6]. As is evident from Fig. 2, the discrepancy be~
tween the experimental and calculated results is no more than £15% for Fo=4-107%-0,2, despite the substan-
tial simplification of the original model,

6, =~ 3Fo + 5.64

For uniform three~dimensional heating of a liquid enclosed in a cylindrical shell of height H=2R, the
liquid-surface temperature may be described by the "accurate” (within the framework of the given model)

expression
1,13V Fo
V/TRa”w

The results obtained from Eq, (10) for the same value of A as for a sphere (A =0.04) are 25% higher, on aver-
age, then the corresponding numerical solution [10]. If A =0.08 for a vertical cylinder, the results given by
Eq. (10) agree with the numerical solution (see Fig. 3) for a Fourier number of 0,01-0,1 differing by +15%
from the boundaries of the Fourier-number range (Fo=2.5* 10'3, 0.3) in which the numerical solution was
carried out,

@, = 2.08Fo + (10)

Using the proposed model, the temperature profile of the stratification region [see Eq. (5)] can be cal-
culated, as well as the depth of the stratification region, the time at which quasisteady conditions begin, and
the maximum possible (for the given value of Ra) temperature drop in the liquid.

Thus, the depth of the stratification region for the given error of the stratification determination may
be calculated from Eq. (5). Taking this error to be 3% of the maximum stratification-region temperature
®, (0, Fo) gives
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If the function ierfe has the value given in Eq. (11) the argument must be equal to 1,33; therefore
%/R ~ 2,66 Ra"'* YV AFo . (12)

It is of interest to note that the depth of the stratification region determined experimentally in [2] varies anal-
ogously with time (x/R ~Fo’-%),

What are the limits of application of the proposed model? It may be assumed that the model is at least
valid in the range Ra=10%-10'2, The lower value of the Fourier number is determined by the time to establish
circulatory motion in the liquid Foj, after which liquid heating from above predominantly by heat conduction
begins [10, 11]. This time may be estimated using the formula proposed in [11]:

Fo; = 0,32Ra—02, (13)
For Ra~10°~10!? the approximate range of the lower limit on the time is Foy ~10"%1073,

The upper limit of the use of the model over time Foy, is determined by the situation when the stratifica-
tion descends to the "bottom" of the volume. For Fo=Foy, quasisteady conditions may be expected to begin,
i.e., the invariability over time of the temperature difference between any two points in the liquid. The heat-
ing of the whole liquid mass will be the same as for a plate with a given temperature profile for a constant
heat-flux density at its surface [8]. Finally, this scheme is very conventional: The stratification cannot de-
scend to the "bottom™ since its lower part is washed away by hot liquid jets issuing from the bottom of the
volume, In addition, when quasisteady conditions begin the heat fluxes at the free surface of the liquid and
at the lower region of stratification should be the same. However, this scheme allows the order of magnitude
of Fow to be calculated. In fact, Foy can be determined from Eq. (12), setting x=2R (which is true for both a
spherical volume and a cylindrical volume with H=2R). ThenEq.(12) gives the result

10,56
Fo o

w= T (14)
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" Fig. 2. Comparison of calculated and experimental data (spherical
volume). Calculated data: a) Ra=10'% b) 10'; ¢) 10'% d) ® = 3Fo.
Experimental data: 1) Ra=2,1-10'; 2) 4,2-10'; 3) 2.1-10'2, nitro-
gen, m = =0,95 [3]; 4) Ra=10'", 10", water and alcohols, m= 1[6],5)
Ra =10 , water m=0.85 [7].

Fig. 3. Comparison of results obtained from Eq. (10) and by numer-
ical solution [10] (cylindrical volume, H=2R, Ra=10% m=1), The
points are for A =0.04; curve 1 is for A =0.08; curve 2 isthe numer-~
ical solution in [10); curve 3 is for @ =2,08 Fo, from Eq. (10).

For a cylinder containing liquid when Ra=10%, H=2R, and A =0.08, the result is Foy, =0.7; this agrees with
the data of [10], where even for Fo=0,5 no quasisteady conditions were observed.

In the case of a liquid in a spherical shell (A =0,04) the range of the upper limit on the Fourier numbers
for which the model may be used is Foy, ~1.4-0.14, for Rayleigh numbers in the range 10°-10'2,

Finally, substituting Eq. (14) into Eq. (8), the maximum value of the temperature stratification corre-
sponding to quasisteady conditions is obtained; for large filling (FgR‘FS)
o 0,85
Amax — A Ral/e

In the case of a spherical shell with Ra =10°-10'? the maximum temperature drop inside the liquid is
found to be @y yqx ¥2-0.2. For a cylindrical volume with H/R=2 and Ra=10¢, Eq. (15) gives ®yayx =1.06;
this is in satisfactory agreement with [10], where for near~quasisteady conditions (Fo=0,3) the maximum
vertical temperature drop in the volume is 9; 5,4, ~0.9. The surface temperature @ for Fo 2 Fo,, may evi-
dently be determined from Eq. (15).

(15)

This model of stratification not only gives a satisfactory quantitative description of the experimental
results but also permits a simple explanation of several qualitative features of heat transfer in closed volumes
for boundary conditions of the second kind. For example, the model gives a clear interpretation of the well~
known increase in surface temperature and in temperature stratification with decrease in Ra (or decrease in
the acceleration due to gravity) [5]. Admittedly, the model does not permit a transition in the limit to weight-
lessness and is true only in the range of sufficiently Rayleigh numbers (for example for Ra > 10% is Fo=xTFoy
[51). Another example is the explanation of the different temperature variation with time at different points
in the liguid (along the vertical axis). Thus in a certain range of Fourier numbers the model gives an approx-
imate dependence ® (x/R) ~Fo", where for the unstratified liquid core (x~H) n=1 and for the surface (x=0)
0.5<n<1; for Fo=0.01-0.1, n~0,6-0.8, which is observed in experiments [3] and in the numerical solution
[10] (see Figs. 2 and 3).

All the examples illustrating the use of this model refer to the case of large filling (m=0.85). For
significantly smaller values of m, the expression for the effective thermal conductivity Aopp will evidently be
more complex. In this case the specific form of the expression for Aysr may be determined on the basis of an
analysis of the corresponding experimental data and is an independent problem.

In conclusion, note that the model of temperature stratification outlined earlier [12], taking into account
the shell configuration and the increase in mean-mass liquid temperature reduces to a one~dimensional dif-
ferential heat~conduction equation with a convective term; the solution of this equation may only be obtained
using numerical methods. Because of this, and also of the'indeterminacy of the expression for the velocity
appearing in the convective term, it is impossible to obtain reliable and to any degree general results. Inthe



model which is considered in the present work, the effect of liquid motion and the shell shape on the heat prop-
agation may betaken into account by an appropriate choice of the effective thermal conductivity.

NOTATION

A, coefficient in Eq. (6); @, thermal diffusivity; ¢, specific heat at constant pressure; F, surface area;
g, acceleration due to gravity; H, height of liguid in volume; m =V; /V, filling c_oefficient; Q, heat flux, q, heat-
flux density; R, characteristic dimension (radius) of volume; T, temperature; T, mean~mass temperature;
AT =T = Tg Ty, initial temperature; V, vclume; x, distance along volume axis, downward from liquid surface;
B, volume-expansion coefficient; € =Agfr/A; A, Aeff, thermal conductivity and effective thermal conductivity; v,
kinematic viscosity; p, density; T, time; ® =ATA/qR, dimensionless temperature; Fo=aT /R?, Fourier number;
Ra =gR!8q/vair, Rayleigh number, Indices: g, gas; [, liquid; s, gas—liquid interface.
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